EXISTENCE OF SOLUTIONS TO THE NONHOMOGENEOUS STEADY
NAVIER-STOKES EQUATIONS(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER C J AMICK APR 83
UNCLASSIFIED MRC-TSR-2509 DAAG29-80-C-0041 F/G 20/4 , NL

L AD-A129 171

END

pATe
Ly

oTic




! o

SALRLEY avis? &

-

o e -

e

"" =I_O m 2 g2
- 40

s =5

L2 s

==
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




MRC Technical Summary Report #2509

EXISTENCE OF SOLUTIONS
TO THE NONHOMOGENEOUS
STEADY NAVIER-STOKES EQUATIONS

ADA129171

Charles J. Amick

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

April 1983

(Received March 28, 1983)

Distribution unlimited

“‘“ ?\\X' ng?‘ Approved for public release

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

83 06 07 072




PRy VN

wtatasin | s whaskc .l

- —

L SRS B 8171 T AN N AR a4 eSO W ) e n e e e e

\A\;cession For L
NIIS RARI _-:¥§7Li
UNIVERSITY OF WISCONSIN - MADISON W1 TAB i

MATHEMATICS RESEARCH CENTER : | ewlegend 0 :

- enifieation :

EXISTENCE OF SOLUTIONS TO THE NONHOMOGENEOUS e i
STEADY NAVIER-STOKES EQUATIONS :

-stributien/

R aaa]

‘ Charles J. Amick ave Tability Godes
‘. 2 2
rechnical Summary Report 42509 o SeaLl ‘-Th,/ﬂl‘
“i ] Mpzeial ;
April 1983 i [ |
' , i
ABSTRACT S ‘ ;
. . - - - —— ‘.—di

This paper concerns the existence of steady solutions to the Navier-
Stokes equations in a bounded domain c.n?. The condition of solenoidality
for the velocity field imposes a necessary cond{s}on on the boundary data.
For a certaln class of symmetrical domalns,?:é'show that this necessary
condition implies the existence of a solution to the problem. The method
consists of proving a priori bounds on solutions by assuming the contrary,

rescaling the equations, and then arriving at a solution to the steady Euler

equations in the limit. Examination of this equation leads to the desired

contradiction. After one has suitable bounds on any solutions, one uses the
Leray-Schauder theorem to prove existence.

L gothre

In addition, -we remark on the problem of a general bounded domain

//;Z~4L<LJFL\ and suggest how certalin maximum principles might yield the expected

results.
F"-—\__
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SIGNIFICANCE AND EXPLANATION
The steady Navier-Stokes equations model the flow of a viscous,
incompressible fluid in some region . With u and p denoting the
velocity and pressure, respectively, one has
-vAu + (u*V)u=f - Vp
in Q .
Veu = 0 (*)
u= ; on 3 .,
and the problem is to solve for (u,p) for prescribed constant viscosity
vV > 0, external force f, and boundary data ;. The boundary data is not
arbitrary but satisfies the necessary condition
I ~
0= IQ Veu = 121 fri 9,°ny (**)
where I‘1 denote the components of 3 and ng denotes the outward
normal. Condition (**) merely states that the total outflow across 23} is
zero. If one imposes the stronger condition of no outflow across each
boundary component:

Ir gi'ni = o, i = 1,...,!! . . (..')
i

then classical theory going back to Leray fifty years ago ensures that (*) has
a solution for any Vv > 0 and any suitably smooth function ¢£.

If (***) is replaced by the necessary condition (**), the standard
methods only give the existence of a solution when Vv is sufficiently
large. 1In this paper, we show that the necessary condition on ; yields a
solution (u,p) to (*) in a certain class of domains  1in the plane. We
also remark on the case of a general domain in the plane, and show how certain

maximum principles are applicable.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




EXISTENCE OF SOLUTIONS TO THE NONHOMOGENEOUS
STEADY NAVIER-STOKES EQUATIONS

Charles J. Amick

1. INTRODUCTION

' In this paper we consider the steady Navier-Stokes equations in a bounded

2
domain (an open, connected gset) 1 C R :

v, Au + (uV)us=¢f -Vp , (1.1)
in Q

Veu =90, (1.2)

u= ; on 3 . (1.3)

- -
We assume that 30 is infinitely differentiable, f € C (Q + l?),
; e c'(an * l?), and vo > 0. The problem is to find a velocity field
u= (u,,uz) and a pressure p satisfying (1.1) - (1.3). The boundary data

; is not arbitrary, but satisfies the compatability condition
m ~
0 = In div u = 121 fri g, (1.4)

where the P1 are the components of 31 and n; denotes the outward normal

to T We shall assume‘throughout this paper that (1.4) holds. Our

L
intention is to prove the existence of a solution (u,p) to (1.1) - (1.3) for
any ; satisfying the necessary condtion (1.4). The results will hold for a
certain class of domains Q < !?, and we shall remark on the general case in
section 3.

1f one replaces (1.4) by the stronger condition

Iy ggony =0, 4= 1,.0um (1.5)
1

then the existence of a solution (u,p) for any vo > 0 4is classical (at

. Department of Mathematics, University of Chicago, Chicago, IL.
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least for domains Q < ln, n = 2 or 3) and goes back to the fundamental work
of Leray [9] (see also [2], [8], [12]). cCondition (1.5) has been assumed in
the recent work of Foias and Temam (3], (4], Saut and Temam [10), and Temam
[11], [12] on properties of solutions to the steady Ravier-Stokes equations.
As we shall gee in section 2, the main advantage of (1.5) is that it allows
the boundary data ; to be extended to 2 as a curl; more precisely, there
is a smooth function ¢ defined on Ny such that V x ¢ = 3 on 3. One
then mollifies ¢ near to 31 and obtains a priori bounds suitable for the
' Leray-Schauder theorem.

If (1.4) holds but not (1.5), then one cannot extend ; as a curl to

1. However, standard theory [8), [12] ensures the existence of a function

ge c'(ﬁ > l?) satisfying the Stokes equations:

-v_Ag = -Vq (1.6)
° in @
Veg=0, (1.7)
g=g on 230 . (1.8)

If we set u = gtv, then (1.1) - (1.3) is equivalent to solving the problem

v, BV + (g*V)v + (veV)v + (v-T)g = f-9, (1.9)
in

Vev = 0 , (1.10)

v=0 on 3R , (1.11)

where f = f-(g°V)g is fixed and we absorbed the gq term into p. Let
2
! H(R) dJdenote the completion of {v = (vi,vz) e é;(ﬂ*l ) 1 divv=20 in Q)

in the Dirichlet norm:

i,

The problem of solving (1.9) - (1.11) for (v,p) 4is equivalent to finding a

(veak) solution v of the following equation:

!
2 v, ,2
i <v,v>, = | 12 - D it .
i Voo = 1Vlg Sur B ‘ale
l
t




;
|
|
|

e

v fn (g Vv + ]9 ¢ (veV)v + ]n ¢ (ve¥)g
~ (1.12)
- fn é°f for all ¢ € H(R) .

In the usual way [8], [12], this is egquivalent to solving an operator equation
;ov =Av +F , ' (1.13)

where F @ H(1) and A is a compact map of H(R) into itself. Here P

and A are defined by the Riesz representation theorem:

!n ¢ (g Vv + In ¢e (veV)v + fn $:(veVg) = —<4,Av>,

and
[q ¢t = @.P

for all ¢ e H(}). After one has found a solution v e H to (1.13), it is

then standard to recover a smooth solution (p,v) of (1.9) - (1.11).

For each V > vo, let

s(v) ={veH(Q) : vw=a2av+ P . (1.14)

Note that v € S(v) if and only if there is a pressure p such that (gtv,p)

satisfy (1.1) - (1.3) with vo replaced by v. We shall prove in Theorem 2.1
that S(V) is non-empty if V exceeds some critical value v and that

lvlH < const./v, Vv > v . (1.15)
Our main result in section 2 is the following estimate:

sup _  sup IvlH <o (1.16)
ve[vo,v] ves(v)

This ensures that all solutions of the equation

v = %- (Av + F) , (1.17)
o

A e [0,1], are uniformly bounded in H(Q), and so the existence of a
solution to (1.13) follows by the Leray-Schauder theorem. We shall prove
(1.16) by assuming it is false, and then deriving a contradiction. Although
(1.15) holds for bounded domains in l? or l3, we have only succeeded in

proving (1.16) for a certain class of domains Q C l2 and data ; and £,
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Since (1.4) and (1.5) are the same for m = 1, we shall restrict attention at

all times to domains with m > 2 boundary components.

DEFINITION: A bounded domain 9'=.R2 is said to be admissible if

{(a) 90 is of class é-, (b) 30 consists of m > 2 components ri, (c) 8

is symmetric about the line {x2 = 0} and (4) each component Pi intersects

the line {x2 = 0}.

2
A function h = (hy,h,) mapping Q or 231 into R 1is said to be
symmetric about the line {x2 = 0} if h1 is an even function of Xy
while hz is an odd function of Xy

DEFINITION: A pair (f,g) is said to be admissible data if (a)

-— 2 ~ [ 3 2 ~
fe c”(n + R), (b)) gec (i +R), and (¢) f and g are symmetric about

the line {x2 = 0}.
If 2 1is an admissible domain and (f,;) is admissible data, it is
natural to seek a solution (u,p) to (1.1) = (1.3) with u symmetric about

(x2 = 0}; the corresponding pressure p will be an even function of Xy

The main result of this paper is the following theorem which is proved in

section 2.

2 ~
THEOREM 1.1. Let 1<« R be an admissible domain and let (f,g) be

admissible data. Then for every vo > 0 there exists a solution
(u,p) € (3 » R2) x C(@ » R} of (1.1) - (1.3). The function u is

symmetric about {x2 = 0} and the pressure p is an even function of x,.

Acknowledgement. I am indebted to Professor J. Heywood for bringing this

problem to my attention. 1In addition, he strongly suggested that the proof of

(1.16) might follow by assuming the contrary and deriving a contradiction.
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2. A PRIORI BOUNDS
Before proceeding to the proof of Theorem 1.1, we show how the condition
(1.5) leads to solutions of (1.1) - (1.3) for any vo > 0. Assume for the
moment that @ is a bounded domain in K (n = 2 or 3) with smooth boundary
and f and 'a are smooth on 9 and a0, respectively. Equation (1.5)
allows one to extend the boundary data ; to N as acurl; g=Vxy in 5
and g = ; on 3 (21, [8), [12). Por each € > 0, 1let p(°j;e) denote a
suitable mollifier [2; p. 209}, [8; p. 108), [12; p. 175) with p = 1 near to
30 and with support in an e€-neighborhood of 3. Upon choosing €
sufficiently small and setting g = Ux(u(ese)P{(e)), one has (2; p. 210], [8;
p. 109), [12; p. 175}
IIQ g&‘(v-V)vl < const. elvlg for all v e H(Q) (2.1)
and the constant is independent of € and v. One seeks & solution of (1.1)
~ (1.3) of the form u = 9 + v, so that v is to satisfy (1.9) - (1.11)
(with g replaced by 9, and ¢ replaced by T+ voAge), or, equivalently, !
(1.13). with S(v) as in (1.14), it suffices to choose £ such that

sup sup IvIn <®, JIf v € S(v), then getting é = v in (1.12) yields
v>v° ves(v)

2 -~
v lvlﬂ - 'Ig v (veV)g_ + IQ ve f

- IQ g (vV)v + !ﬂ ve't

(2.2)
< const. e|v|: + SQE!E; |?|22 .
L ()
If we chcHie eo such that const. eo < vo/z, then
2 const. ,~,2
|v|!_l < P Ed 2 (2.3)
oo L (Q)

for all v e s(v) if v > vo. It then follows from the Leray=-Schauder

theorem that a solution to (1.13) exists.




j
|
|

The key point in the analysis above was the representation ‘g =9 x¢ i
which allowed us to put a mollifier with small support near 932 inside the
curl. The form of gE led to (2.1) which was the key step in proving (2.3)
from (2.2), 1If one drops the condition (1.5) (but still has the necessary
condition (1.4)), then it is not clear how to proveed. One might set

» - n ~
M={gec (R +R) :Veg=0 in 2 and g= g on 932} and set

fng'(v-V)v
u = inf max 2 .
geM veH(R) IVIH

If u < “o' then one gets a priori bounds for v e S(v), v > vo' by (2.2).
When ; satisfies (1.5), then (2.1) gives u = 0. Unfortunately, in general
one will not have ¥ < vo, and so a different approach must be taken.

The following theorem gives the existence of a unique solution to (1.1) -

(1.3) if v is sufficiently large.

THEOREM 2.1. Let Q be a bounded domain in K (n = 2 or 3) with aQ

o W - n ~ o n
of class C, and let fe€C (2 +R) and geC (32 + R). Then there

exists v > 0 such that (1.1) - (1.3) has a solution (u,p) € C (% + R") x

d'(H + R) for all v > Ve In addition, (u,p) is unique up to an additive
constant for p.
Proof. Let g be as in (1.6) - (1.8). Now

2
Ifn g*(ve¥)v| € const. |g| - |v|: = CIle ., v eH®) |,
L ()

and the constant C 1is independent of v. Let ; be any fixed number
greater than 2C. We claim that (1.1) - (1.3) has a solution for any v > ;.
Indeed, if vo is so given, then it suffices to solve (1.13). If v € s(v),
then (2.2) gives
2 ~ 2 ~
VlvlH = fﬂ go (veT)v + !ﬂ fv €< C lvlH + const [f] 2 'V'H '

L (Q)
whence




const .
H v

vl < i) 5 (2.4)

L)
for all v > vo. This estimate gives an a priori bound for solutions to

{1.17), and so existence follows from the Leray-Schauder theorem.

If (u,p) and (w,q) satisfy (1.1) = (1.3), then a calculation yields

v_lumwl2 = [ we ((u=w)*V) (u-w) '

[a=wl

< const. |wl -

Ju~w]|
i) )

< const. lu-wl:

by (2.4). The constant is independent of vo, and so if v is sufficiently
large, then vo > ; ensures a unique solution of (1.13). The existence of a
pressure p and the regularity of (u,p) is standard (8], [12], qg.e.d.

Throughout the rest of this section, we shall assume that Q < RZ is an
admissible domain and (f:;) are admissible data. lLet g be a solenoidal
extension of ; to 1 as in (1.6) ~ (1.8); since ; and Q@ are gymmetric
about {xz = 0}, the extension g may be taken to be symmetric. We seek a
solution u of (1.1) - (1.3) of the form u = gtv, where v @ H(}) and v
is to be symmetric ahout {xz = 0}. Let Hs(n) denote the closed subspace of
H() consisting of velocity fields which are symmetric about {x2 = 0}. It
is a Hilbert space with the previous inner product <-,->n. The problem of
solving (1.1) - (1.3) is equivalent to finding v e HB(Q) satisfying
vov = Av + P, where F € Hs(ﬂ) and A is a compact map of H, into
itself. If we set

s(v) = {ve H (R) : Vv = av + F} .

then the proof of Theorem 2.1 ensures that S(v) is non-empty for all v > v
and that (1.15) holds. 1In order to prove (1.16) (and thereby Theorem 1.1), we

shall assume the contrary and derive a contradiction.

f ?W ¢ .,ug;;\tr,l‘“,

‘%ﬁﬂﬁ?
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v |,+*® as n + », Without loss of generality

Let v € S{Vv ) with
n n nH

we may assume that vn + Vv e [vo,v] as n + », Since v ] S(vn), it
satisfies (1.12) with vo replaced by vn. Standard theory gives the

existence of a pressure Pn (normalized by fn pn = 0) such that

- vnAvn + (g-V)vn + (vn-V)g + (vn-V)vn = f - Vpn

(2.5)
= f -~ (g*V)g - Vpn in Q@ .
If we set u =g + Vae then
- vnAun + (un'V)un =f - Vpn in Q
-V
and we have absorbed the term - vnAq = ;—2 Vg into the p, term. Define
o
~ ~ ~ 2
Yn T un/|vn'H' Yn vh/'vnlﬁ and p, = pn/lvn|H *

Without loss of generality, we may assume that ;n-‘ v in Hs(n) and

Cn +5% in 199), g e [1,). The estimates of Cattabriga [1], [12] applied

to (2.5) yield

< const.{|f] + I(q-V)vn + (vn'V)vn + (vn'V)gI }

Ip_|
Y g 13(a) 19(q)

n
w

2
‘ .
const.{1 + 'vnlﬂ}
~ 1
for any a € (1,2). In particular, P, is bounded in W 'q(ﬂ), qge (1,2),

~ ~ 9 ~ ~
independently of n, and so pn-a p in Ww 'a(ﬂ), qe (1,2), and P, + p in

Lq(ﬂ), ge [1,»). If we multiply (2.5) by v,, integrate over Q, and then

2
divide by |vn| there results

HI
~ ~ ’ ~ ~
= [} - —— [ . .
v, ]9 g v VIV T fg fov_ (2.6)
nH
~ ~ 2
Since vtV in L (Q), we may take the limit of n + ® in (2.6):
v = jn g'(;'V); . (207)
ad 2
If we multiply (2.5) by a fixed ¢ € Co(n + R), integrate over {1, divide
2
by |v | and let n * ®, there results

nH
~ ~ ~ L] 2
fn $e(veV)v = -[0 9:%p, p €C (R + R) . (2.8)

R Ll T s -
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Since ¢ was arbitrary, it follows that (;,;), with ve u'(n), is a weak

solution of the steady Euler equations;

(;-V); - -V} almost everywhere in Q . (2.9)
Recall that the solenoidality of v is immediate from its membership in
Ha(ﬂ) while v =0 on 3R (in the sense of a trace) for the same reason.

1 -~ -
‘da), q e (1,2), it follows that (vs¥)7v,

Since v @ as(n) and ; ew
vp e 13(Q), g e (1,2), and so (2.8) actually holds for all ¢ € LT(q),
r € (2,). 1In particular, setting ¢ = g yields
[q #(w9)v = =) ¢¥p = [ atvigp)
- m — (2.10)
= J3q Pon = 1§1 Iri PRy -

The integration by parts in (2.9) is justified since p € W"q(ﬂ) has a well-
defined trace on 39.

To motivate what is about to follow, we argue formally for the moment.
Since ; e Hs(n), we have ; =0 on 30 in the sense of a trace, and so
(2.9) suggests that ; is a constant C; on each component ri of 3. 1If
we could show that these constants are all equal to, say, C, then (2.10)
would give

~ ~ In ~
IQ g (veV)v = ¢ ) IP g;°n = 0 {2.11)
i=1 i
by (1.4). However, (2.7) shows that (2.10) is impossible, and so we will have
the desired contradiction. 1In the following two theorems, we justify these

formal arguments.

THEOREM 2.2, The trace of ; on T

N is a constant C;, i = 1,...,m,

almos*: everywhere on Pi.

Proof. Let 1 be arbitrary and set [ = Pi. Let z, € I' and change to

a new orthogonal coordinate system (;1,;2) centered at z, with the

;2~axis pointing along the inner normal to T at z_ . We write

-9 =

s LSRRI MY 3 = A s o S L T e R




Cratuid el Al e . oms .

- sk

l
i
;
[

locally by x, = h(x'), x,

~ ) )
Ve (-—- ——). TFor small € > 0, the boundary component I is given

1 22 -
e(<,.), with heC. Let §>0 be

sufficiently small such that

A = A(€,8) = {(?:1.;2) Xy € (=€ ,€), 'iz e (n(x), nix,) + &)len .

1/2

ax,ax,) vl

~ ~ ~ o~ 2
e -~ o~ h(x )48 |v(x_ ,x )|
vVvl dx _dx, € const. fc ! 1.2

|x2-h(x1)|

n(x,) |§2-h(§'1)|2

~ (2.12)

c h(x,+6 O /2

< const.(4f_ef - Vvl ®) vl
h(x1)

~ 2
. < const.lvln = const. ,

where we have used the standard estimate

(x,) 2

a+é wix, ~ a+é ~ 2~

I (; - ) dx, < 4f S0t (%)) %ax, (2.13)
2

is the

, ~
for functions w € C [a,a+§] which vanish at x2 = a, Since H(Q)

completion of co functions, one first uses (2.13) to prove (2.12) for such

functions and then takes the limit.

~ o~ A

Since (v*V)v = ~Vp, it follows from (2.12) that

jh(e,5)|vp|-o(s) as §+0 .

If ¢ e c;(-e,e), then
[ate,8) ' xyIptxqx dax dx, = [2 [ ' (xIplx  hix)) + x))ax ax,

x, axz

6 ~ a~ ~ ~ ~ ~ - ~ ~ ~ ~ ~
= -fie fo ¢(x1){;f‘ (x1.h(x1)+x2) + h-(x1) if‘ (x1.h(x1)+x2)}dx2dx'

= o(8§) as § + 0 .

If we divide hoth sides of this eguation by § and let § + 0, there results

J%e 91 (x,)p(x, h(x )dx, = 0 for all 4 e Cpl-e,e) .

It follows that p is a constant on T almost everywhere. g.e.d.

-10-




Theorem 2.2 did not use the symmetry of (I, but we shall need it for
Theorem 2.3. We now introduce some notation for the boundary components Pi.
Without loss of generality, we may assume that P, is the ‘exterior’
component; that is, @ < int P1. Since  is admissible, the set

{xz- 0} A T, consists of two points (ai,O) and (81,0) with, say,

i

a, < Bi' We may label the components so that a, < °, < 82--- <a < Bu < 81.

Note that the sets {(x1,0) 1@, <x < “2}' {(x1,0) : B, < x, < a1+1},

i =2,...,m1, and {(x‘ /0): Bm <x, < B,} are all contained in 9.

THEOREM 2.3. The constants Cy in Theorem 2.2 are all equal: Ci = C,

i=1,.0.,m.

Proof. We shall prove that C; = C, since the other cases are
similar. Near to the point (01,0), the component P1 has the form
{(h1(x2),x2) 2 x, € (~§,5)} for some small & > 0. Here h, e ¢ and

hy(0) = @, . Similarly, r2 has the form {(hz(xz),xz) : X, e (~8,8)) near

to (02,0). Set A= A(§) = {(x1,x2) : x, € (h1(x2),h2(x2)), x. @ (0,8)}, so

1
that A(§)< Q@ for all amall 8. Define the total-head pressure

0-p+2|v| -p#z

2

(v1 + vz). where v = (v1,v2). Since (v*V)v = -Vp

(almost everywhere) in £, we have

~ v v
ai & - :x + ¥ 3x1 + V2 axz
1 1 1 1
(2.14)
v v av
= (-, av1 -, aV1) + v, av1 + v, 3x2
3 X2 *, 1
= 4;25 almost everywhere in Q1 ,
. v, dv,
where w = I % denotes the vorticity. Integrating this equation over
2 1

A(S) yields




8 ~ ~
fo{p(hz(xz),xz) - plh (x,) ,x,)}dx, = 8(C, - C,)

=gy V2 ¢

or, equivalently

(2.15)

1 ~ o~
Ie, = ¢yl =5 Hagva®! -

If we extend ;2 to Rx (0,8) as zero outside A(S§), then

~ 2 ~ 2
Ivz(x1,x2)l - 8 lvz(x1,x2)|

Ag 2 ol IR b 2 dx,dx,
* 2
o & .3 ~ 2 ~ 2
<4 _ 'ax2 Vo1 < 4f (5 177

where we have used (2.13) and the fact that ;2(x1,0) = 0 by symmetry. The

use of these estimates in (2.15) give

v, |
2 1 2 'V ~2
ley = 1" « < ([asy % 2 ) Unesy ©
2

O

.2 ~ 2 ~20 ~ 22
< 2 (467 [, 6, 17917) (4f, 5, 199170 = 16¢f, o 17v17)

+ 0 as §»0 .

A(S)

Hence, C1 = C2. a.e.d.

As noted before, the use of Theorem 2.3 and (1.4) in (2.10) gives a
contradication and so (1.16) holds. The Leray-Schauder theorem then gives the

existence of a gsolution v € Ha(ﬂ) to (1.13), and the existence of a

pressure p and the regularity of (u,p) following in a standard way.

3. REMARKS ON THE GENERAL CASE

We now consider the problem of solving (1.1) = (1.3) in a general bounded

2
domain @ € R . We assume 3 is smooth and that it consists of m > 1 .

components. Furthermore, £ and ; are smooth functions from Q and ",
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respectively, to n?. In order to prove the existence of a solution, it
suffices to prove (1.16). If we assume this is false, then there is a
sequence with v e s(vn) and lvnlu +4 ® ag n+ e, Setting ;h = vnllvnln
and ;n - pnllvn|: yields ;h-‘ v in H(Q), ;n + v in Lq(n), qe [1,»-),
p,= p in w' @), g e (1,2), ana p,+p in LU, qge (1,°). The pair
(;,;) is a weak solution of the steady Euler equations (;-V); - -vS in Q.
Theorem 2.2 shows that ; is a constant C; on each component Pi of 3.
In order to derive a contradiction from (2.7), it suffices to show that the
C; are all equal.

Theorem 2.3 showed that if v e Hs(ﬂ) is a weak solution of the steady
Euler equations in an admissible domain §, then the corresponding pressure
; has the same constant value on each of its components. If we could show
for general  that

; € H(Q) and (;-V); - -V; in 8 implies ; = C on Fi, {i=1,...,m, (3.1)
then we would have solved (1.1) - (1.3). Unfortunately, (3.1) {8 not true as
the following simple example shows.

EXAMPLE 3.1. Let @ = {(r,8) : 1<r=/x+ x2 <R 0¢0< 20} and
let v e C1[1,R) with $°(1) = $'(R) =0 and ¢" € L2(1,R). Define

X x

Y(r,0) = (3-1— vir), - si-w(r)) - (;3 vi(x), - ;‘- v'(r)) € H(?) and define
1

pr) = [F W' i/waw, re(1,R .

Then (;,;) is a weak solution of the steady Buler equations in Q:

(wV)v = =¥p ,
in @,

Vev =0
V=0 on ag .
If ¢' 1is not identically zero, then the pressure at r = R will be
strictly positive, and so (3.1) does not hold. This example suggests that the

approach of section 2 is only practical when one considers symmetrical domains
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1 and symmetrical solutions ; e n.(n). Condition (3.1) is actually too
strong a requirement since ; is not just any solution of the Buler
equations, but is a certain limit of solutions to the steady Navier-Stokes

equations. For definiteness, we shall assume throughout the rest of this

paper that f is the annulus of Example 3.1 and f = 0. The boundary data

; is assumed to satisfy (1.4) but we drop the demand of symmetry about
(xz = 0}. Recall that we begin by fixing some v, >0, let S(V) be as in
(1.14), and then try to prove (1.16) by assming the contrary and deriving a

contradiction. let Vv e [VO,VJ be guch that |v 'H + », where

n

Vo™ U, - g Pquations (1.1) - (1.3) lead to certain maximum principles; more

1 2
precisely, if On =P, + ; lunl denotes the total head pressure, then
2
VA - u+Vd =v in Q@ , (3.2)
n n n n nn
3

where wn = 5%; (un)1 - 5;: (un)2 denotes vorticity. Equation (3.2) yields a
one-sided maximum principle for On: if A is an open subset of , then

&n takes its maximum on A at dA. This maximum principle was used by
Gilbarg and Weinberger ([5), [6] to study the difficult problem of steady
Navier-Stokes flow past a body in the plane. Define ;n = On/lvn|: = ;n +
%|;n+q/|vnln|2' and note that ;n satisfies a one-sided maximum principle.
Since (;n';n) converge in a certain sense to a solution (;,;) of the
steady Fuler equations, one might expect that the corresponding total head
pressure ® = ; + % I;l2 satisfies some (weak) version of a one-sided maximum

principle. We prove this is true in the following theorem and the remarks

thereafter.

THEOREM 3.2. Let s8,t denote arbitrary numbers satisfying

1 <8<t <R, and set A= {(r,0) : s8<r<t, 0<6< 2x}. Then there exist

sequences with sj 4+ 8 and tj +t as j + = such that ;(lj,°).

'3(:,,-) e c(0,2v] and
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ess aup;(x,y)< max ;(r,ﬂ) e 3= 1,2,.00 .
(x,y)ea t‘lj'tj

f6e[o,2x]
Proof. Por r € (1,R) define

£, (r) = Iu 1#(x,8) - & (r,0)] I35 #(x,0) - 35 ¢ (r,0)|a0

and note that
[® 2 (r)dr < const.|e-4 | LI Y
1'n nLPa) n )

~ o~ 1
where i+-‘--1 and a € (1,2). Since ¢, .n are bounded in w'q(ﬂ),

I

~~

qe (1,2), we may assume that .n »> ; in x.q(m for all g e [1,»), In
1
particular, z + 0 in L (Y,R) as n + e, Since z + 0 in measure, a

suitable subsequence converges to zero uniformly almost everywhere. Given any

point s @ (1,R), we can find a sequence {-1}:_1 such that
s, +s as i+ and z (s,) 0 as n+ e (3.3)
i n i
Define
1 x ~
Rn(r) =% o Qn(r,B)dB

1
'q(ﬂ), q e (1,2), standarad

and similarly for H(r). Since ;n-‘ ; in w
results for traces show that Hn -H+0 in C[(1,R] as n+ e, let i be
fixed and let On e [(0,2v] be such that
.n('i'en) - .('1'011) = nn(’i) - H(si) .

Now

~ ~ 2

max Nn(si,ﬂ) - Q(li.e)l

6e(0,2n]

< '°n"1'°n’ -.('1'011)' + Io |ao (.n('i'e) - 0(-1.0)) a6 (3.4)

2
= 'Hn('i) - H(l1)| + hn('i) + 0 as n+ =

A similar result holds for a suitable sequence ¢t £ ¢+ t. Since ;n satisfies

i

a one-sided maximum principle in 2, we have

=15~
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¢ (x,y) < max ¥ (r,8), (x,y) €A .
" res ,t,
171
6efo,2rn]
If we let n + = and use (3.4), then the theorem is proved. gq.e.d.

Remark. A similar version of Theorem 3.2 holds for arbitrary open sets

- -»
A with A< Q. One can f£find open sets {Aj}j-ﬂ with (1) aAj of class C ,

(11) AcA. < A, c 0, (4i1i)$ is continuous on anj, (1v) 'ikc Ay i

) b
k>3, (v) Aj + A in the sense that A = int n Aj, and such that

ess sup 9 < max 3, 3= 1,2,...
A A

b)
Example 3.1 gives a whole family of solutions to the steady Euler

equations in @ for which the pressure is not the same constant value on
3. We claim that such flows cannot arise as the limit of unbounded solutions
to (1.1) - (1.3) with £ = 0 and “o replaced by vn. Indeed, let § be as
in Example 3.1, and note that the total head pressure is only a function of
r:

$e) = [T o0 av + v ol?, re (LR
Since Y" e L2(1,R) with $'(1) = $*'(R) = 0 (which is equivalent to
v - (¥,r=¥,) € HR)) we know that ¢ 1is (HBlder) continuous on (1,R).
Assume for the moment that & satisfies Theorem 3.2 and ¥' is not
identically zero on [1,R]. Then @ takes its maximum on any interval
[s,t], with 1< 8 < t < R, at one or both of the endpoints. Since
3(1) =0 and 9 » 0 on {1,R], it follows that ? is non-decreasing on
{1,R]. A calculation gives

Be) - Be) = L (pinyaw

for any s,t €@ [1,R] whence

0 < ¢ (w)lwp'(w))' almost everywhere on [1,R) . (3.5)
Since ¢' is not identically zeroc on {(1,R] by hypothesis, theres exists

some w, € (1,R) such that v'(vo) ¥ 0. let B denote the largest open

=16~




interval containing w, such that V' » 0 on B. Since y'(1) = ¢'(R) = 0,
we know that V' vanishes at the endpoints of B. On the other hand, (3.5)
says that .(wW'(w))' 1is one signed (almost everywhere) on B. The only
possibility is that (w'(w))' =0 on B, whence ¥' =0 on B. This is a
contradiction, and so the non-trivial solutions (;,B) of Example 3.1 do not
satisfy Theorem 3.2. Therefore, it is natural to ask the follow question:

Let Q c:R2 denote an annulus and let (;,B) be a weak

solution of the Euler equations (;-V); = -v} in @ with

VeH@®). If & =p+ -;— [v12 satisfies Theorem 3.2 and the

remark thereafter, then does ;lr-1 = ;I or, equivalently,

r=R’
does Nr-1 - Olt_n?

There are other maximum principles associated with (1.1) = (1.3) with

0. If we denote the vorticity by

vo replaced by v and f

w = —2—'u - u,, then a calculation gives
3x2 1 3x1 2

-VAw + uVou = 0 in Q ,

8o that o satisfies a two-sided maximum principle. If {u }u are

n n=1

solutions of (1.1) = (1.3) with vo replaced by vn, then

~ 1 ) ]
W = {— (u), == (u)),}
n IvnlH axz n' 1 Bx1 n'2

satisfies a two-sided maximum principle in Q: if A is an open subset of

R, then the maximum and minimum values of ;n on ; occur on JdA. Although
w is bounded in 1L (Q2) and converges weakly to w=_—"v_ - —v_, this

n axi 1 3x1 2

is not enough to prove results analogous to Theorem 3.2 for ;; we would need

some control on derivatives of ;n'
b€ 4 (;,p) is a weak solution to the steady Euler equations in  with

; e H(R}) (and ; is not necessarily a limit of Navier-Stokes solutions),

1.9

then the total head pressure ; ew  (Q), gq € (1,2), whence e Lq(n) for

all g e {1,), By using the averaging methods of Gilbarg and Weinberger [5),




e . . m—— ——-Wﬂ

{6] for the pressure }. one can show that I: e C(a) and ;(x,y) + 0 as
]

(x,y) + 32, If we know in addition that Theorem 3.2 and the remark after it

It is not known if & e C(R).

hold, then we have ; e x."m).
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